

TESTING FOR THE VERIFICATION OF COMPLIANCE OF POWER CONVERTER WITH: G99 (MARCH 2020): REQUIREMENTS FOR THE CONNECTION OF GENERATION EQUIPMENT IN PARALLEL WITH PUBLIC DISTRIBUTION NETWORKS ON OR AFTER 27 APRIL 2019

Procedure: PE.T-LE-62

Test Report Number	2220 / 0019 - F	
Туре	Inverter / charger with UPS functionality	
Trademark	Quattro	
Tested Model	48/15000/200-100/100	
Variant Models	48/8000/110-100/100 48/10000/140-100/100	
APPLICANT		
Name	SGS Tecnos, S.A. (Certification Body)	
Address	C/ Trespaderne, 29 - Edificio Barajas 1 28042 MADRID (Spain)	
Hired by	Victron Energy B. V.	
Address	De Paal 35, JG Almere 1351 JG Almere-Haven – The Netherland	ls
TESTING LABORATORY		
Name:	SGS Tecnos, S.A. (Electrical Testing Lab	oratory)
Address	C/ Trespaderne, 29 - Edificio Barajas 1 28042 Madrid (Spain)	
Conducted (tested) by	Jaime Lledó Gonzálvez (Tr.F-1)	d l
	(Project Engineer)	M
	Omar Kalim Vázquez	
	(Project Engineer)	/
De la coloradore de la		
Reviewed and Approved by	Miguel Rodríguez García	Wignet
	(Technical Reviewer)	H
Date of issue	17/05/2021	
Number of pages	38	

Important Note:

- This document is issued by the Company under its General Conditions of service accessible at http://www.sgs.com/terms_and_conditions.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.
- This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful, and offenders may be prosecuted to the fullest extent of the law.
- Unless otherwise stated the results shown in this test report refer only to the sample(s) tested as
 received. Information of derived or extension models of the range as provided by the applicant, (if
 any), is included in this report only for informative purposes. The Company SGS shall not be liable
 for any incorrect results arising from unclear, erroneous, incomplete, misleading or false information
 provided by Client. This document cannot be reproduced except in full, without prior approval of the
 Company.

Test Report Version	Date	Resume
2220 / 0019 - F	17/05/2021	First issuance

Test Report Historical Revision:

INDEX

1	SCOPE		4
2	GENERA	L INFORMATION	5
	2.1	Testing Period and Climatic conditions	5
	2.2	Equipment under Testing	5
	2.2.1	Reference Values	
	2.3	SGS Test equipment list	9
	2.4	Measurement uncertainty and Data Sampling Rates	10
	2.5	Test set up	10
	2.6	Definitions	
	2.7	Standard Categories	11
3	RESUME	OF TEST RESULTS	12
4	TEST RE	SULTS	13
	4.1	Functional testing of the Interface Protection	13
	4.1.1	Under/Overvoltage protection	13
	4.1.2	Under/Overfrequency protection	15
	4.1.3	Loss of Mains	
	4.1.4	Reconnection	
	4.1.5	Frequency drift and step change stability test	
	4.2	Limited Frequency Sensitive Mode – Over (LFSM-O)	
	4.3	Power quality	
	4.3.1	Current Harmonics	
	4.3.2	Power factor	
	4.3.3	Flicker	
	4.3.4	DC Injection	
	4.4	Short-circuit current contribution	
	4.5	Self-monitoring – Solid state disconnection	
	4.6	Active power cessation following instruction	
_	4.7	Operation range	
5	-	S	
6	ELECTRI	CAL SCHEMES	37
7	CE DECL	ARATION	38

1 SCOPE

SGS Tecnos, S.A. (Electrical Testing Laboratory) has been contract by SGS Tecnos, S.A. (Certification body) in order to perform testing according to:

• **G99/1-6 (March 2020)**: Requirements for the connection of generation equipment in parallel with public distribution networks on or after 27 April 2019

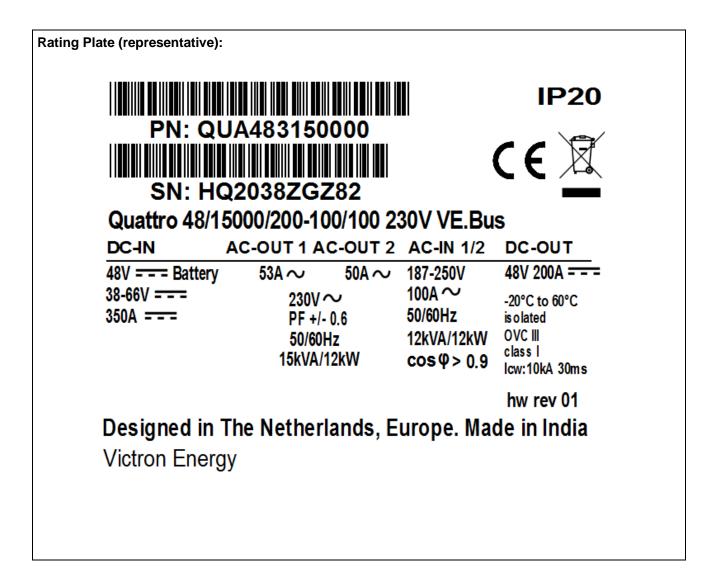
Tests have been performed to show just compliance with requirements for inverter generation systems of type A.

2 GENERAL INFORMATION

2.1 TESTING PERIOD AND CLIMATIC CONDITIONS

The necessary testing has been performed along between July 27th, 2020 and May 11th, 2021.

All the tests and checks have been performed at 25 \pm 5°C, 96 kPa \pm 10 kPa and 40% RH \pm 10% RH.


SITE TEST

Name:	Victron Energy, B. V.
Address	Koldingweg 9a, 9723HL – Groningen
	The Netherlands

2.2 EQUIPMENT UNDER TESTING

Apparatus type:	Inverter / charger with UPS functionality
Installation:	Fixed installation
Manufacturer:	Victron Energy, B. V.
Trademark:	Quattro
Model / Type reference:	48/15000/200-100/100 (see pages 7 and 8 for further information)
Serial Number:	HQ1930C9TQJ
Software Version:	2656475.1
Rated Characteristics:	See pages 7 and 8 for full ratings of equipment
Date of manufacturing: 2019	
Test item particulars	
Input:	2x 1 phase, AC
Output:	2x 1 phase, AC
Input/output:	Battery, DC
Class of protection against electric shock :	Class I
Degree of protection against moisture:	IP 20
Type of connection to the main supply:	Fixed connection
Type of connection to the main supply : Cooling group	
	Fixed connection

Equipment under testing: - 48/15000/200-100/100

The variants models are:

- 48/8000/110-100/100
- 48/10000/140-100/100

The variants models have been included in this test report without tests because the following features don't change regarding to the tested model:

- Same connection system and hardware topology
- Same control algorithm.
- Output power within $1/\sqrt{10}$ and 2 times of the rated output power of the EUT or Modular inverters.
- Same Firmware Version (1)

(¹) Firmware versions for the covered models are:

- 2656475.1 (48/15000/200-100/100 model)
- 2653475.1 (48/10000/140-100/100 model)
- 2655475.1 (48/8000/110-100/100 model)

The different software versions for the covered models don't affect grid code requirements, the only change is to limit maximum AC power in the different models, as declared by the manufacturer.

Victron Quattro is a combined inverter / charger, with UPS functionality.

It has two one-phase AC input and two one-phase AC output ports, and an input / output port for the connection of batteries.

The following table including ratings of the tested and the variant models:

Quattro	12/5000/220-100/100 24/5000/120-100/100 48/5000/70-100/100	24/8000/200-100/100 48/8000/110-100/100	48/10000/140- 100/100	48/15000/200- 100/100
PowerControl / PowerAssist		Ye		
Integrated Transfer switch		Ye		
AC inputs (2x)		range: 187-265 VAC Inpu		
Maximum feed through current (A)	2x100	2x100 INVERTER	2x100	2x100
Input voltage range (V DC)		9,5 - 17V 19 -	33V 38-66V	
Output (1)	Ou	tput voltage: 230 VAC ± 2%	Frequency: 50 Hz ± 0,1	%
Cont. output power at 25°C (VA) (3)	5000	8000	10000	15000
Cont. output power at 25°C (W)	4000	6500	8000	12000
Cont. output power at 40°C (W)	37 00	5500	6500	10000
Cont.output powerat 65°C (W)	3000	3600	4 500	7000
Peak power (W)	10000	16000	20000	25000
Maximum efficiency (%)	94/94/95	94/96	96	96
Zero load power (W)	30/30/35	45/50	55	80
Zero load power in AES mode (W)	20 / 25 / 30	30/30	35	50
Zero load power in Search mode (W)	10/10/15	10/20	20	30
		CHARGER		
Charge voltage 'absorption' (VDC)	14,4 / 28,8 / 57,6	28,8/57,6	57,6	57,6
Charge voltage 'float' (V DC)	13,8 / 27,6 / 55,2	27,6/55,2	55, 2	55,2
Storage mode (V DC)	13,2/26,4/52,8	26,4 / 52,8	52,8	52,8
Charge current house battery (A) (4)	220/120/70	200/110	140	200
Charge current starter battery (A)		4 (12V and 24V	(models only)	
Battery temperature sensor		Ye	S	
		GENERAL		
Auxiliary output (A) (5)	50	50	50	50
Programmable relay (6)	3x	3x	3x	3x
Protection (2)		a-	g	
VE.Bus communication port	For parallel and	For parallel and three phase operation, remote monitoring and system integration		
General purpose com. port	2x	2x	2x	2x
Remote on-off		Ye	5	
Common Characteristics	Operatin	ig temp.: −40 to +65°C Hur	nidity (non-condensing): m	ax. 95%
		ENCLOSURE		
Common Characteristics	Material &	Colour: aluminium (blue R	AL 5012) Protection categ	ory: IP 21
Battery-connection		Four M8 bolts (2 plus an	d 2 minus connections)	
230 V AC-connection	Bolts M6	Bolts M6	Bolts M6	Bolts M6
Weight(kg)	34/30/30	45/41	45	72
Dimensions (hxwxd in mm)	470 x 350 x 280 444 x 328 x 240 444 x 328 x 240	470 x 350 x 280	470 x 350 x 280	572 x 488 x 344
		STANDARDS		
Safety		EN-IEC 60335-1, EN-IEC 60	335-2-29, EN-IEC 62109-1	
Emission, Immunity	EN 55014-1, EN 55014-2,	EN-IEC 61000-3-2, EN-IEC 6, EC 610		8, EN-IEC 61000-6-2, EN
Vehicles, aftermarket		12V and 24V mo	dels: EN 50498	
Anti-islanding		See our	website	
1) Can be adjusted to 60 HZ; 120 V 60 Hz on request 2) Protection key: a) output short circuit b) overkaad c) battery voltage too high d) battery voltage too low e) temperature too high f) 230 VAC on inverter output	 Non-linear load, crest facto At 25°C ambient Switches off when no exter Programmable relay that ca DC under voltage or genset AC rating: 23 0V / 4 Å DC rating: 4 Å up to 35 VDC 	r 3:1 mal AC source av ailable an a.o. be set for general a larm, is start/stop function		

Model / Rating	48/8000/110-100/100	48/10000/140-100/100	48/15000/200-100/100
AC IN	187-	-250V _{ac} ; 100Α; 50/60Hz, cos φ	>0.9
1/2	6.4kVA/6.4kW	8kVA/8kW	12kVA/12kW
	230V _{ac} ; 50/60Hz; PF: ±0.6		
AC OUT			53A (AC OUT 1) /
1/2	30A, 8kVA/6.4kW	37A, 10kVA/8kW	50A (AC OUT 2),
			15kVA/12kW
DC IN	38-66V _{dc} (48V _{dc} battery)		
	110A	140A	200A
DC OUT	48V _{dc}		
20001	188A	235A	350A

The results obtained apply only to the particular sample tested that is the subject of the present test report. The most unfavorable result values of the verifications and tests performed are contained herein. Throughout this report a point (comma) is used as the decimal separator.

SITE FACTORY

Name:	INCAP CMS Pvt Ltd
Address:	Pandithanahalli Hirehalli Post
	Tumkur, 572168 Karnataka, India

2.2.1 Reference Values

The values presented in the following table have been used for calculation of referenced values (p.u.; %) through the report if not otherwise indicated.

Reference Values			
Rated power, P _n in kW	12 kW (9.6 kW in charging batteries mode)		
Rated apparent power, \mathbf{S}_{n} in kVA	12 kVA (9.6 kVA in charging batteries mode)		
Rated wind speed (only WT), v_n in m/sNot applicable			
Rated current (determined), In in A 53 Aac			
Rated output voltage, (phase to phase) U_n in V_{ac} 230 V_{ac}			
Note: In this report p.u. values are calculated as follows: -For Active & Reactive Power p.u values are reference to P_n -For Currents p.u values, the reference is always I_n -For Voltages p.u values, the reference is always U_n			

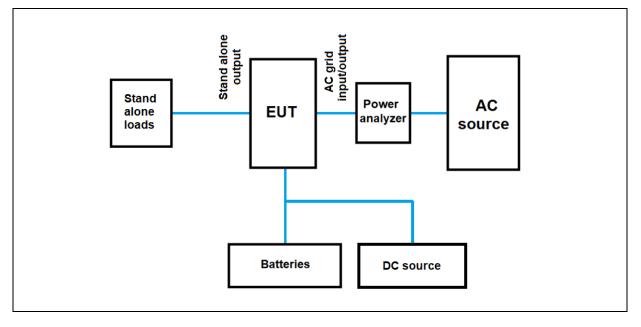
2.3 SGS TEST EQUIPMENT LIST

Equipment used from 27/07/2020 to 07/08/2020				
EQUIPMENT	MARK/MODEL	SGS CODE (DIE)	CALIBRATION DATE	
Temp / HR data logger	TESTO / 622	DIE.840051	10/07/2020 to 10/10/2021	
Multimeter	FLUKE / 289	DIE.560020	15/11/2019 to 15/11/2020	
		DIE.610300-03	13/12/2019 to 13/12/2020	
Voltage probe	SAPPHIRE / SI-9010	DIE.610300-07	13/12/2019 to 13/12/2020	
Amperimetric clamp	HIOKI / 3285	DIE.510051	08/04/2020 to 08/04/2021	
Matlab function	SGS / RMS+POWER	DIE.001461-1	2019/02/15 to	
Matlab function	SGS / VoltageChangeMeasures	DIE 001461-2	2019/02/15 to	
Matlab function	SGS / Sequences	DIE 001461-3	2019/03/07 to	
Matlab function	SGS / Static+MobileWindow	DIE 001461-4	2019/06/10 to	
Matlab function	SGS / Parameter	DIE 001461-5	2019/02/14 to	
EQUIPMENT	MARK/MODEL	Internal ID Code (VICTRON)	CALIBRATION DATE	
Oscilloscope	TEKTRONIX / MDO4034C	MDO4034C C002403	15/07/2020 to 15/07/2021	
Current Clamp	PICO / TA167	P15430447975	17/07/2020 to 17/07/2021	
Power Analyzer	ZES ZIMMER / LMG640	LMG640 01751907	21/07/2020 to 21/07/2021	
Note: All equipment u	Note: All equipment used inside their calibration dates.			

Equipment used from 10/08/2020 to 11/05/2021				
EQUIPMENT	MARK/MODEL	SGS CODE (DIE)	CALIBRATION DATE	
Temp / HR data logger	TESTO / 622	DIE.840051	10/07/2020 to 10/10/2021	
Multimeter	FLUKE / 289	DIE.560020	15/11/2019 to 15/11/2020 02/12/2020 to 02/12/2021	
Amperimetric clamp	HIOKI / 3285	DIE.510052	20/02/2020 to 20/02/2021 13/04/2021 to 13/04/2022	
Matlab function	SGS / RMS+POWER	DIE.001461-1	2019/02/15 to	
Matlab function	SGS / VoltageChangeMeasures	DIE 001461-2	2019/02/15 to	
Matlab function	SGS / Sequences	DIE 001461-3	2019/03/07 to	
Matlab function	SGS / Static+MobileWindow	DIE 001461-4	2019/06/10 to	
Matlab function	SGS / Parameter	DIE 001461-5	2019/02/14 to	
EQUIPMENT	MARK/MODEL	Internal ID Code (VICTRON)	CALIBRATION DATE	
Current Clamp	PICO / TA167	P15430447975	17/07/2020 to 17/07/2021	
Voltage Probe	TESTEC / TT-SI9002	1906168	17/07/2020 to 17/07/2021	
Measuring system	DEWESOFT / SIRIUSi- SYSTEM (4xHV; 4xLV)	DB19102621	07/08/2020 to 07/08/2021	
Note: All equipment used inside their calibration dates.				

2.4 MEASUREMENT UNCERTAINTY AND DATA SAMPLING RATES

Associated uncertainties through measurements showed in this this report are the maximum allowable uncertainties.


Magnitude	Uncertainty
Voltage measurement	±1.5 %
Current measurement	±2.0 %
Frequency measurement	±0.2 %
Time measurement	±0.2 %
Power measurement	±2.5 %
Phase Angle	±1°
Temperature	±3° C

Note 1: Measurements uncertainties showed in this table are maximum allowable uncertainties. The measurement uncertainties associated with other parameters measured during the tests are in the laboratory at disposal of the petitioner.

Note 2: Where the standard requires lower uncertainties that those in this table. Most restrictive uncertainty has been considered.

2.5 TEST SET UP

Below is the simplified construction of the test set up.

Different equipment has been used to take measures as it shows in section 2.3 of this Test Report. Current and voltage clamps have been connected to the inverter input / output for all the tests.

All the tests described in the following pages have used this specified test setup.

The test bench used includes:

EQUIPMENT	MARK / MODEL	RATED CHARACTERISTICS	OWNER / ID.CODE
DC source	DELTAELEKTRONIKA / SM70-CP-450	Vdc 0 – 70V Idc max=450 A. 15kW	VICTRON
Batteries	Victron Energy / LFP Smart 12.8/300 (4 in series)	12.8V 300Ah	VICTRON
AC Source	Regatron / TC.ACS.30.528.AWR.S.LC	230Vac/50Hz 3phase 30kW Inom=72A per phase	VICTRON
AC Source Loads	Regatron / TC.ACS.30.528.AWR.S.LC	230Vac/50Hz 3phase 30kW Inom=72A per phase	VICTRON

2.6 **DEFINITIONS**

EUT	Equipment Under Testing	Hz	Hertz
А	Ampere	V	Volt
VAr	Volt-Ampere reactive	W	Watt
Un	Nominal Voltage	p.u.	Per unit
In	Nominal Current	Pn	Nominal Active Power
MV	Medium Voltage	Рм	Instantaneous Active Power
LV	Low Voltage	Qn	Nominal Reactive Power
LVRT	Low Voltage Ride Through	Sn	Nominal Apparent Power
K _f (Ψ _k)	Flicker Form Factor	Sk	Symetrical Fault level
K _u (Ψ _k)	Voltage Variation Factor	In	Harmonic Current
Pst	Short-term flicker disturbance	TDC	Total Demand Current Distortion
	factor	TDD	Total Demand Distortion
PGU	Power Generation Unit		

2.7 STANDARD CATEGORIES

The standard defines connection types, depending on capacity and voltage at connection point:

Type A capacity range Type B capacity range range		Type C capacity range	Type D capacity range		
0.8 kW ≤ P < 1 MW	1 MW ≤ P < 10 MW	10 MW ≤ P < 50 MW	≥ 50 MW		

Type A, B or C generation modules require a connexion point lower than 110 KV, whereas Type D generation modules require a connexion point higher than 110 KV. If voltage is lower than 110 KV and its maximum capacity its equal or higher than the one specified above, it will also be considered Type D.

As explained in the Scope of the Test Report, tests have been performed to show compliance with requirements for inverter generation systems of type A.

3 RESUME OF TEST RESULTS

INTERPRETATION KEYS

Test object does meet the requirement::	Ρ	Pass
Test object does not meet the requirement::	F	Fails
Test case does not apply to the test object: :	N/A	Not applicable
To make a reference to a table or an annex::	See ac	ditional sheet
To indicate that the test has not been realized::	N/R	Not realized

REPORT G99		CHAPTER OF THE STANDARD	RESULT	
SECTION	SECTION	G99	REJULI	
4.1		Functional Testing of the Interface Protection	Р	
4.1.1	A.7.1.2.2	Over / Undervoltage protection	Р	
4.1.2	A.7.1.2.3	Over / Underfrequency protection	Р	
4.1.3	A.7.1.2.4	Loss of Mains Protection	Р	
4.1.4	A.7.1.2.5	Reconnection	Р	
4.1.5	A.7.1.2.6	Frequency drift and step change stability test	Р	
4.2	A.7.1.3	Limited Frequency Sensitive Mode – Over (LFSM-O)	N/A	
4.3	A.7.1.4	Power Quality	Р	
4.3.1	A.7.1.4.1	Harmonics	Р	
4.3.2	A.7.1.4.2	Power Factor	Р	
4.3.3	A.7.1.4.3	Voltage Flicker	Р	
4.3.4	A.7.1.4.4	DC Injection	Р	
4.4	A.7.1.5	Short Circuit Current Contribution	Р	
4.5	A.7.1.6	Self-Monitoring – Solid State Disconnection	Р	
4.6	11.1.3	Active Power Cessation Following Instruction	Р	
4.7	11.2.1 / 11.2.3	Operation Range	Р	

Note: The declaration of conformity has been evaluated taking into account the IEC Guide 115.

4 TEST RESULTS

4.1 FUNCTIONAL TESTING OF THE INTERFACE PROTECTION

4.1.1 Under/Overvoltage protection

These tests have been done according to chapter A.7.1.2.2 applying testing procedure and testing points from Annex A2-3 and Table 10.1 of the Standard.

To evaluate this protection, three different tests have been performed:

- Trip voltage test, to assess that the protection function of the inverter works as the voltage levels stated by the standard.
- Trip time test, to assess that the disconnection of the inverter takes place into the time limits established by the standard.
- No trip test, to assess that the protection does not trip with a voltage value within the limits stated, or if the voltage is outside the limits for a time shorter than the delay time.

Five repetitions have been performed for the trip time and trip voltage tests of each voltage protective function to test the repetibility.

The applied tolerance for the voltage value tests has been ± 0.015 U p.u.

The following procedures have been used for the different tests:

- For testing the accuracy of trigger value threshold: Starting from a voltage level 1.5% Un below or above the trip value of the protection function to be tested, the voltage is increased or decreased in steps of 0.5% Un for at least 1.5 times of the trip time delay stated in the protection function to be tested, and the voltage at which the EUT trips is to be recorded
- For testing the accuracy of the trip time: Starting from a voltage value 4V below or above the
 previously recorded trigger value, the voltage shall be increased in a single step to a value
 4V above or below that recorded value. The time taken from the start of the step until the EUT
 trips is recorded as the trip time.
- For the no-trip test, two procedures have been used:
 - Set the voltage to a value just above or below the measured trip value, but within the valid operating range, for a duration longer than the trip time configured
 - Set the voltage to a value just below or above the measured trip value, but outside the valid operating range, for a duration shorter than the trip time configured, then return to the valid operating range

The following tables show the test results for the trip voltage, the trip time and the no-trip tests:

	Trip voltage test								
Stage/Prot Function	Test	Voltage at the start (p.u.)	Trip Voltage Desired (p.u.)	Trip voltage measured (p.u.)	Disconnection	Deviation measured (p.u.)			
	1	0.820		0.804	🗆 NO 🖾 YES	+0.004			
	2	0.820		0.804	🗆 NO 🖾 YES	+0.004			
U/V	3	0.820	0.800	0.804	🗆 NO 🖾 YES	+0.004			
	4	0.820		0.804	🗆 NO 🖾 YES	+0.004			
	5	5 0.820		0.804	🗆 NO 🖾 YES	+0.004			
	1	1.120		1.143	🗆 NO 🖾 YES	+0.003			
	2	1.120		1.143	□ NO ⊠ YES	+0.003			
O/V st. 1	3	1.120	1.140	1.143	🗆 NO 🖾 YES	+0.003			
	4	1.120		1.143	□ NO 🛛 YES	+0.003			
	5	1.120		1.143	🗆 NO 🖾 YES	+0.003			
	1	1.170		1.198	🗆 NO 🖾 YES	+0.008			
	2	1.170		1.198	🗆 NO 🖾 YES	+0.008			
O/V st. 2	3	1.170	1.190	1.197	🗆 NO 🖾 YES	+0.007			
	4	1.170		1.197	🗆 NO 🖾 YES	+0.007			
	5	1.170		1.197	🗆 NO 🖾 YES	+0.007			

Trip time test								
Stage/Prot. Function	Test	Delay Time limit (s)	Disconnection					
	1		2.543	□ NO ⊠ YES				
	2		2.542	□ NO ⊠ YES				
U/V	3	2.500	2.523	□ NO ⊠ YES				
	4		2.542	□ NO ⊠ YES				
	5		2.542	□ NO ⊠ YES				
	1	1.000	1.087	□ NO ⊠ YES				
	2		1.088	□ NO ⊠ YES				
O/V st. 1	3		1.068	□ NO ⊠ YES				
	4		1.063	□ NO ⊠ YES				
	5		1.066	□ NO ⊠ YES				
	1		0.541	□ NO ⊠ YES				
	2		0.542 🗆 NO					
O/V st. 2	3	0.500	0.543	□ NO ⊠ YES				
	4		0.540	□ NO ⊠ YES				
	5		0.540	□ NO ⊠ YES				

	No-trip test										
Stage /	Stage / Step 1				Step 2		Step 3			Disconn.	
Prot Functio n	U (p.u.)	Time req. (s)	Time meas. (s)	U (p.u.)	Time req. (s)	Time meas. (s)	U (p.u.)	Time req. (s)	Time meas. (s)	Step1, Step 2 or Step 3	
U/V	0.817	5.00	5.01	0.780	2.48	2.48	0.817	5.00	5.00	⊠ NO □ YES	
O/V st. 1	1.135	5.00	5.00	1.170	0.98	0.98	1.135	2.00	3.65	⊠ NO □ YES	
O/V st. 2	1.135	5.00	5.00	1.210	0.48	0.48	1.135	1.00	4.14	⊠ NO □ YES	

4.1.2 Under/Overfrequency protection

These tests have been done according to chapter A.7.1.2.3 applying testing procedure and testing points from Annex A2-3 and Table 10.1 of the Standard.

To evaluate this protection, three different tests have been performed:

- Trip voltage test, to assess that the protection function of the inverter works at the frequency levels stated by the standard.
- Trip time test, to assess that the disconnection of the inverter takes place into the time limits established by the standard.
- No trip test, to assess that the protection does not trip with a frequency value within the limits stated, or if the frequency is outside the limits for a time shorter than the delay time.

Three repetitions have been performed for the trip time and trip frequency tests of each frequency protective function to test the repetibility.

The applied tolerance for the frequency value tests has been ± 0.10 Hz.

The following procedures have been used for the different tests:

- For testing the accuracy of trigger value threshold: The frequency shall be increased or decreased with a slow ramp rate of less than 0.10Hz/s, or, if it is not possible, in steps of 0.05Hz for a duration that is longer than the trip time delay stated in the protection function to be tested, and the frequency at which the EUT trips is to be recorded
- Starting from a frequency value 0.30Hz below or above the previously recorded trigger value, the frequency shall be increased in a single step to a value 0.30Hz above or below that recorded value. The time taken from the start of the step until the EUT trips is recorded as the trip time.
- For the no-trip test, two procedures have been used:
 - Set the frequency to a value just above or below the measured trip value, but within the valid operating range, for a duration longer than the trip time configured
 - Set the frequency to a value just below or above the measured trip value, but outside the valid operating range, for a duration shorter than the trip time configured, then return to the valid operating range

The following tables show the test results for the trip frequency, the trip time and the no-trip tests:

	Trip frequency test									
Stage/Prot Function	Test	Frequency at the start (Hz)	Trip Frequency Desired (Hz)	Trip frequency measured (Hz)	Disconnection	Deviation measured (Hz)				
	1	47.80		47.45	□ NO 🛛 YES	-0.05				
U/F st. 1	2	47.80	47.50	47.45	□ NO 🛛 YES	-0.05				
	3	47.80		47.45	□ NO 🛛 YES	-0.05				
	1	47.30		46.95	□ NO 🛛 YES	-0.05				
U/F st. 2	2	47.30	47.00	46.95	□ NO 🛛 YES	-0.05				
	3	47.30		46.95	□ NO 🛛 YES	-0.05				
	1	51.70		52.05	□ NO 🛛 YES	+0.05				
O/F	2	51.70	52.00	52.05	□ NO 🛛 YES	+0.05				
	3	51.70		52.05	□ NO ⊠ YES	+0.05				

	Trip time test									
Stage/Prot. Function			Trip time measured (s)	Disconnection						
	1		20.07	□ NO ⊠ YES						
U/F st. 1	2	20.00	20.05	□ NO ⊠ YES						
	3		20.06	□ NO ⊠ YES						
	1		0.57	□ NO ⊠ YES						
U/F st. 2	2	0.50	0.58	□ NO ⊠ YES						
	3		0.56	□ NO ⊠ YES						
	1		0.59	□ NO ⊠ YES						
O/F	2	0.50	0.59	□ NO ⊠ YES						
	3		0.59	□ NO ⊠ YES						

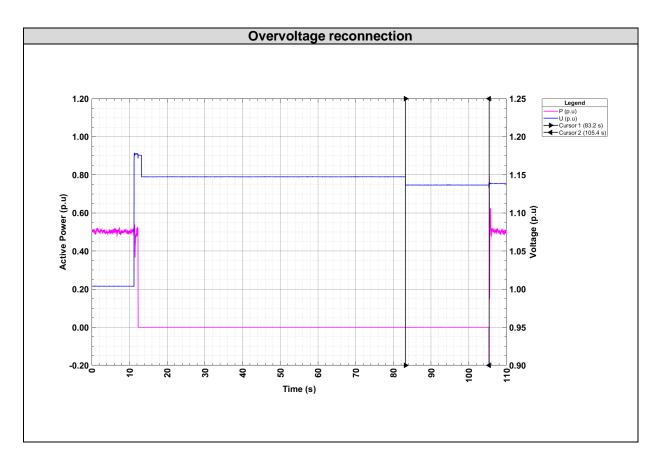
	No-trip test										
Stage /		Step 1			Step 2			Step 3		Disconn.	
Prot Functio n	f (Hz)	Time req. (s)	Time meas. (s)	f (Hz)	Time req. (s)	Time meas. (s)	f (Hz)	Time req. (s)	Time meas. (s)	Step1, Step 2 or Step 3	
U/F st. 1	47.70	30.00	32.77	47.20	19.80	19.80	47.70	30.00	31.78	⊠ NO □ YES	
U/F st. 2	47.70	30.00	33.30	46.80	0.48	0.48	47.70	30.00	33.13	⊠ NO □ YES	
O/F	51.80	120.00	122.00	52.20	0.48	0.48	51.80	120.00	122.00	⊠ NO □ YES	

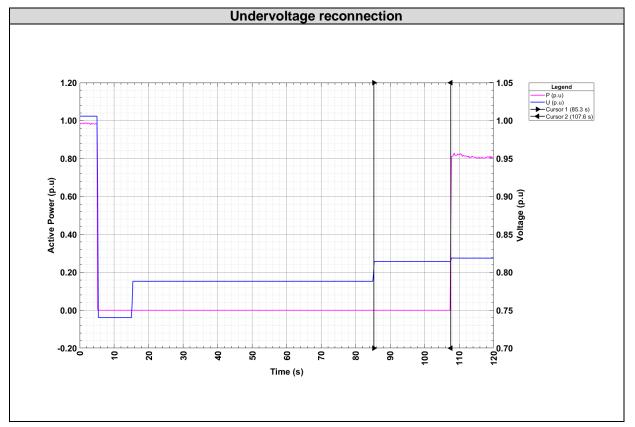
4.1.3 Loss of Mains

Tests regarding loss of mains have been done according to chapter A.7.1.2.4 and Annex A2-3.

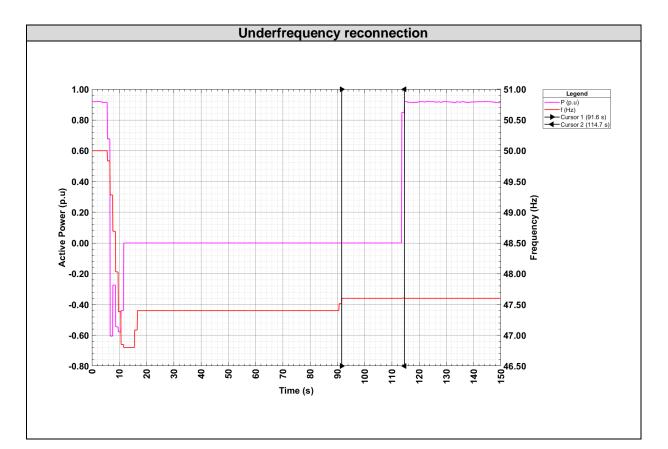
The tests have been performed according to BS EN 62116 standard. Results presented in the following table are a subset of the complete results and have been evaluated considering a trip time limit of 1 second.

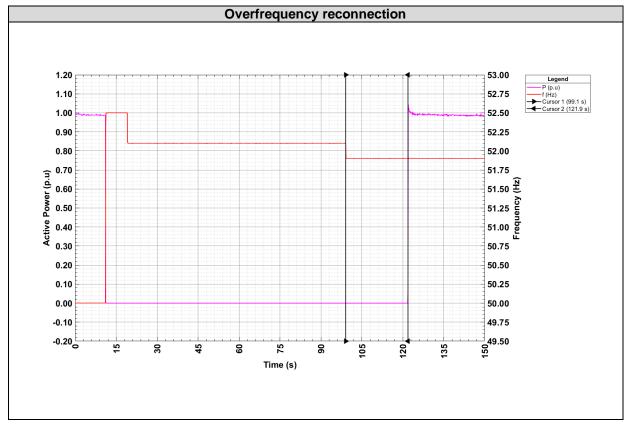
Loss of Mains Test							
Test power	Test 22	Test 12	Test 5	Test 31	Test 21	Test 10	
Test power and imbalance	33%	66%	100%	33%	66%	100%	
and impalance	-5%Q	-5%Q	-5%P	+5%Q	+5%Q	+5%P	
Trip Time (ms)	192	165	233	164	253	220	


For additional and detailed information about the complete tests and the results, refer to Test Report No. 2220 / 0019 – A.


4.1.4 Reconnection

This test has been done according to chapter A.7.1.2.5 using tests values presented in Annex A2-3 of the standard. The aim is to confirm that once the AC supply voltage and frequency have returned within the Stage 1 protection settings (see sections "4.1.1 - Under/Overvoltage protection and 4.1.2 - Under/Overfrequency protection" of this Test Report) following an automatic protection trip operation there is a minimum time delay of 20s before the output is restored.


Drot	Step 1			Step 2		
Prot. Function	Measured value	Time measured (s)	Reconnect	Measured Value	Reconnect time (s)	Reconnect
U/V stg. 1 0.800 p.u.	0.790 U p.u.	70	⊠ NO □ YES	0.814 U p.u.	22	□ NO ⊠ YES
O/V stg. 1 1.140 p.u.	1.150 U p.u.	70	⊠ NO □ YES	1.136 U p.u.	22	□ NO ⊠ YES
U/F stg. 1 47.50 Hz	47.40 Hz	74	⊠ NO □ YES	47.60 Hz	22	□ NO ⊠ YES
O/F stg. 1 52.00 Hz	52.10 Hz	80	□ NO ⊠ YES	51.90 Hz	23	□ NO ⊠ YES

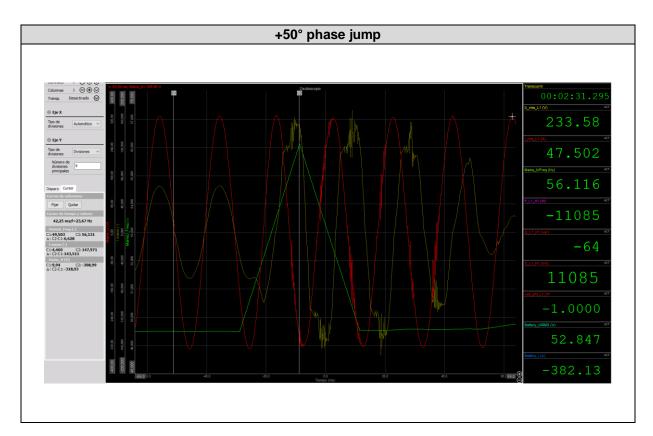


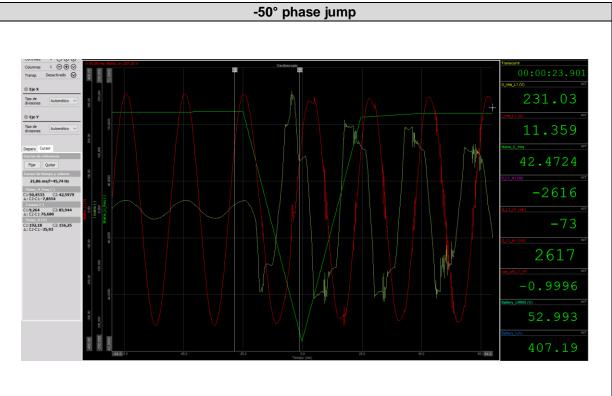
4.1.5 Frequency drift and step change stability test

These tests have been performed according requirements from chapter A.7.1.2.6 and taking the test levels from Annex A2-3 of the standard.

4.1.5.1 Vector shift stability test

The aim of this test is to verify that the EUT is capable of operating without disconnection after a single cycle of frequency is reduced or extended, with subsequent cycles returning to the normal frequency.


This test has been performed programming a 50° vector shift in a voltage cycle to verify that the EUT does not disconnect.

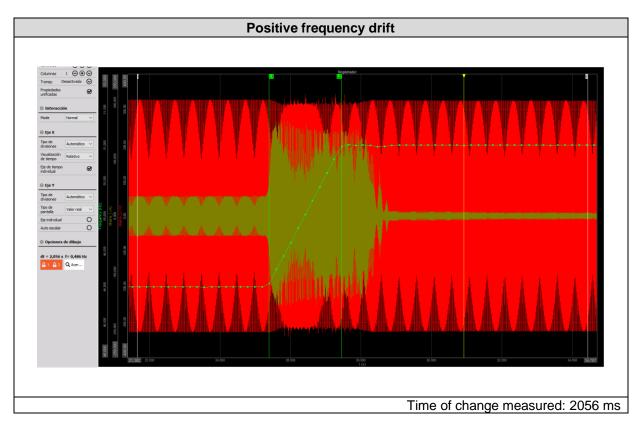

The end frequency has been maintained for at least 10s after the frequency jump is made.

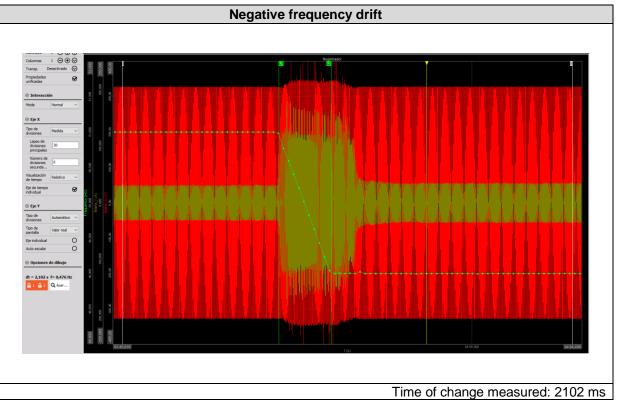
Test results are presented in the following table and graphs:

	Start frequency	Jump Performed (°)	Disconnection
Positive Vector Shift	49.50 Hz	+50	⊠ NO □ YES
Negative Vector Shift	50.50 Hz	-50	⊠ NO □ YES

4.1.5.2 Frequency drift test

The aim of this test is to verify if the EUT is capable of operating without disconnection when submitted to frequency ramps.


The test has been done applying jumps up to 1 Hz/s measured over a window of 500 ms as stated in the standard. The test has been done at 50%Pn.


The end frequency has been maintained for at least 10s after the frequency jump is made.

Results are presented in the following table and graphs:

	Ramp range desired	Change desired (Hz/s)	Final Value (Hz)	Ramp (Hz/s)	Disconnection
Positive frequency drift	49.00 to 51.00 Hz	+0.95 Hz/s	51.00	+0.97	⊠ NO □ YES
Negative frequency drift	51.00 to 49.00 Hz	-0.95 Hz/s	49.00	-0.95	⊠ NO □ YES

4.2 LIMITED FREQUENCY SENSITIVE MODE – OVER (LFSM-O)

The requisites for this test are stated in chapter A.7.1.3, and the testing points are shown in Annex A2-3 of the Standard.

According to chapter A.4.2, this test is not applicable to Electricity Storage devices, so it was not evaluated for the EUT.

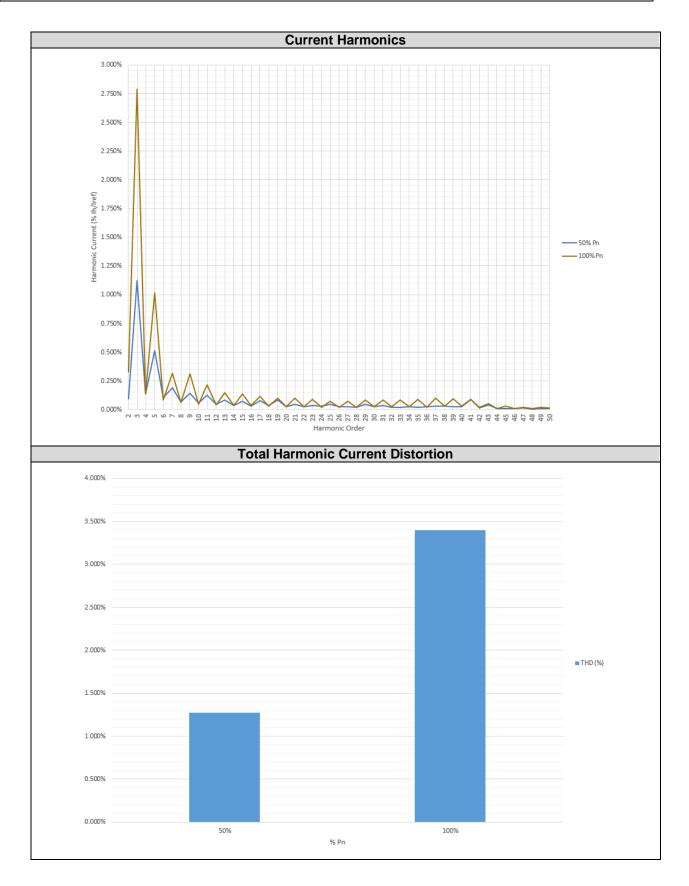
4.3 **POWER QUALITY**

Measurement of energy quality have been measured according to chapter 9.4 of the standard, using requirements from Annex A.7.1.4 of the standard and testing values from Annex A2-3.

4.3.1 Current Harmonics

Measurements have been taken according to BS EN 61000-3-12 standard. For this test, harmonics have been measured twice, one at 100%Pn and another at 45-55%Pn.

For calculations, the fundamental value of the 100% Pn measurement has been considered as the reference value.


Results are presented in the table and graphs below:

Report No. 2220 / 0019 - F

SGS	

P _n (%)	50)%	10	0%	
Nr./Order	I _h (A)	I _h (%)	I _h (A)	I _h (%)	LIMIT (%)
2	0.050	0.095	0.170	0.326	8.000
3	0.589	1.121	1.456	2.787	21.600
4	0.070	0.134	0.070	0.134	4.000
5	0.269	0.511	0.532	1.019	10.700
6	0.056	0.106	0.043	0.083	2.700
7	0.100	0.191	0.166	0.319	7.200
8	0.035	0.067	0.031	0.059	2.000
9	0.074	0.140	0.162	0.310	3.800
10	0.029	0.055	0.025	0.048	1.600
11	0.065	0.123	0.114	0.218	3.100
12	0.024	0.047	0.022	0.042	1.300
13	0.043	0.082	0.077	0.148	2.000
14	0.018	0.035	0.018	0.034	
15	0.038	0.073	0.071	0.136	
16	0.015	0.029	0.019	0.035	
17	0.041	0.079	0.060	0.115	
18	0.018	0.033	0.015	0.029	
19	0.043	0.081	0.051	0.098	
20	0.012	0.023	0.013	0.025	
21	0.024	0.045	0.051	0.097	
22	0.013	0.025	0.012	0.023	
23	0.017	0.032	0.045	0.086	
24	0.014	0.027	0.009	0.018	
25	0.024	0.046	0.037	0.071	
26	0.012	0.022	0.009	0.018	
27	0.012	0.023	0.038	0.073	
28	0.011	0.021	0.011	0.021	
29	0.025	0.047	0.043	0.082	
30	0.012	0.022	0.013	0.025	
31	0.019	0.037	0.043	0.083	
32	0.011	0.021	0.013	0.025	
33	0.009	0.017	0.042	0.081	
34	0.012	0.022	0.012	0.022	
35	0.011	0.020	0.045	0.085	
36	0.013	0.025	0.008	0.016	
37	0.016	0.031	0.051	0.097	
38	0.014	0.027	0.014	0.027	
39	0.012	0.024	0.049	0.093	
40	0.012	0.022	0.014	0.027	
THD (%)	2.5	548	3.	395	23.000
PWHD (%)	1.8	360	1.	767	23.000

4.3.2 Power factor

This test has been done according section A.7.1.2 of the standard, using the reference points and requirements from Annex A2-3 and chapter 11.1.5 of the standard. The aim of the test is to verify the capacity of the EUT of operating at rated power with a power factor within 0.950 lagging and 0.950 leading.

For the test, the power factor has been measured at rated power and at three different voltage levels. For compliance, voltage has to be within $\pm 1.5\%$ of its setpoint.

Test results are presented in the tables below:

Voltage measured (p.u.)	Power factor setpoint	Active power measured (p.u)	Active power expected (p.u)	Reactive power measured (p.u)	Reactive power expected (p.u)	Power factor measured	Power factor deviation
0.943	1.000	0.864 (¹)	1.000	-0.002	0.000	1.000	0.000
1.006	1.000	0.980	1.000	0.006	0.000	0.998	-0.002
1.103	1.000	0.993	1.000	-0.003	0.000	1.000	0.000

(1) The inverter does not reach the expected power values due to the current limitation.

Additionally, to check the compliance with requirements from chapter 11.1.5, the EUT was set to operate with two power factors within 0.950 lagging and 0.950 leading, at the voltage levels required by the previous test.

	Cos phi setpoint: 0.960 (inductive).							
Voltage measured (p.u.)	Power factor setpoint	Active power measured (p.u)	Active power expected (p.u)	Reactive power measured (p.u)	Reactive power expected (p.u)	Power factor measured	Power factor deviation	
0.940	0.960	0.821 (¹)	0.960	0.241	0.280	0.960	0.000	
1.000	0.960	0.874	0.960	0.257	0.280	0.959	-0.001	
1.100	0.960	0.962	0.960	0.284	0.280	0.959	-0.001	

⁽¹⁾ The inverter does not reach the expected power values due to the current limitation.

	Cos phi setpoint: 0.960 (capacitive)							
Voltage measured (p.u.)	Power factor setpoint	Active power measured (p.u)	Active power expected (p.u)	Reactive power measured (p.u)	Reactive power expected (p.u)	Power factor measured	Power factor deviation	
0.940	0.960	0.851 (¹)	0.960	-0.241	-0.280	0.959	-0.001	
1.000	0.960	0.869	0.960	-0.257	-0.280	0.959	-0.001	
1.100	0.960	0.956	0.960	-0.281	-0.280	0.960	0.000	

(¹) The inverter does not reach the expected power values due to the current limitation.

4.3.3 Flicker

Flicker and voltage fluctuations have been measured according to chapter A.7.1.4.3 and Annex A2-3 of the standard.

This test has been performed with three modes of operation: Starting, normal operation and stopping.

Results are presented in the following tables, using the most unfavorable values registered:

Starting test (Ramp change from 0.0% Pn to 100.0% Pn)						
Parameters dc (%) dmax (%) d (t)						
Limits	3.3 %	4 %	500ms			
100% Pn	4.70%	5.22%	697ms			

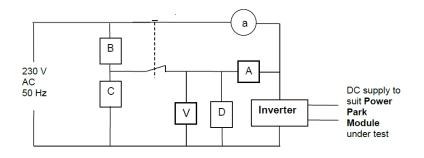
	Running test							
Parameters	Parameters dc (%) dmax (%) d (t) Pst Plt							
Limits	3.3 %	4 %	500ms	1.0	0.65			
33% Pn	0.00%	0.00%	0ms	0.079	0.071			
66% Pn	0.05%	0.11%	0ms	0.092	0.086			
100% Pn	0.57%	1.17%	0ms	0.525	0.458			

Stopping test (Ramp change from 100.0% Pn to 0.0% Pn)						
Parameters dc (%) dmax (%) d (t)						
Limits	3.3 %	4 %	500ms			
100% Pn	8.50%	8.58%	959ms			

Parameters dc, dmax and d(t) in the Starting and the Stopping tests are above the limits of the reference Standard BS EN 61000-3-11, so a new maximum system impedance shall be calculated according to the standard:

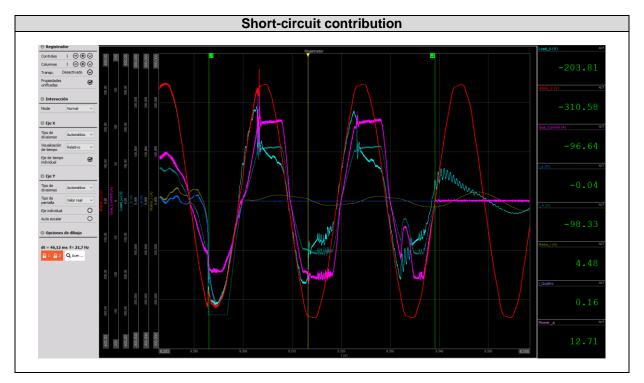
	Z _{ref}	Z _{test}	Z _{sys1}	Z _{sys2}	Z _{sys3}	Z _{sys4}
R (Ω)	0.40	0.40	0.33	0.16	1.05	0.68
Χj (Ω)	0.25	0.25	0.20	0.10	0.66	0.42

Evaluating the calculation results, the maximum permissible system impedance for the equipment is $Z_{sys} = 0.16 + j0.10 \Omega$.


4.3.4 DC Injection

Clauses A.7.1.4.4 and Annex A2-3 of the standard are not applicable to the EUT, as it has an internal isolation transformer.

4.4 SHORT-CIRCUIT CURRENT CONTRIBUTION

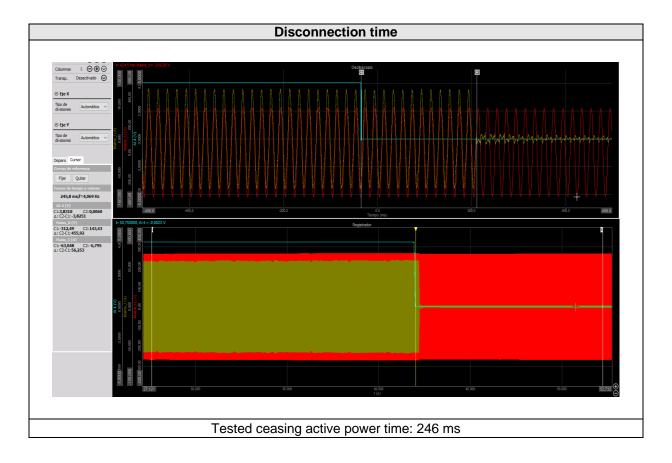

This test has been done according to chapter A.7.1.5, and test results are presented as requested in Annex A2-3 of the standard.

With the unit delivering rated output to resonant load "D", current through ammeter "a" is measured to be zero. After that, the changeover switch is activated, and the unit is connected to the reduced voltage caused by loads "B" and "C". After the changeover switch is activated, the unit is expected to disconnect in less than 1 second. Voltage and current values through time are measured from voltmeter and ammeter "V" and "A" in the diagram above.

Time after fault	Voltage (V)	Current (A)
20 ms	176.2	132.4
100 ms	105.5	74.3
250 ms	71.0	47.0
500 ms	55.6	33.2
Time to trip	46	ms

The voltage and current values for the different times after the fault have been calculated as the RMS for that time period.

4.5 SELF-MONITORING – SOLID STATE DISCONNECTION

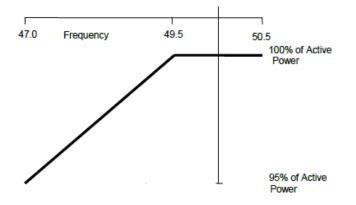

Requirements for solid state switching devices for disconnection from the grid are covered in Annex A.7.1.6 of the standard.

Since the EUT does not have them, this test is not applicable.

4.6 ACTIVE POWER CESSATION FOLLOWING INSTRUCTION

This test has been done according to chapter 11.1.3 of the standard. The aim is to verify the capacity of the EUT of ceasing active power following an instruction at the input port.

The equipment shall be capable of stopping the active power output within 5s after the instruction of ceasing in the logic interface (input port "AUX 1").



4.7 **OPERATION RANGE**

This test has been done according to chapters 11.2.1 and 11.2.3 of the standard, using testing points of Annex A2-3. The aim of the test is to verify if the EUT is capable of operating at different frequency ranges without disconnection and power reduction for the amount of time specified in the table below:

Test №	Frequency range	Voltage level	Operating period
Test 1	47.00 Hz to 47.50 Hz	0.850 p.u.	≥ 20 s
Test 2	47.50 Hz to 49.00 Hz	0.850 p.u.	≥ 90 min
	49.00 Hz to 51.00 Hz	1.000 p.u.	Unlimited
Test 3	51.00 Hz to 51.50 Hz	1.100 p.u.	≥ 90 min
Test 4	51.50 Hz to 52.00 Hz	1.100 p.u.	≥ 15 min

In the range from 47-50.5 Hz, according to chapter 11.2.3, the EUT shall be capable of keeping its active power output level constant and not lower than the following characteristic:

According chapter A.4.2 of the standard, the requirement for continuous active power output is not applicable for storage equipment, so it was not tested.

Tested levels have been taken from Annex A2-3 of the standard.

Test №	Voltage setpoint (p.u)	Frequency setpoint (Hz)	Voltage measured (p.u)	Frequency measured (Hz)	Active Power measured (p.u)	Time measured	Disconnection
Test 1	0.850	47.00 Hz	0.851	47.00	0.844	20.7 s	□ YES ⊠ NO
Test 2	0.850	47.50 Hz	0.853	47.51	0.841	91 min	□ YES ⊠ NO
Test 3	1.100	51.50 Hz	1.100	51.49	0.989	91 min	□ YES ⊠ NO
Test 4	1.100	52.00 Hz	1.101	51.99	1.000	16 min	□ YES ⊠ NO

5 PICTURES

6 ELECTRICAL SCHEMES

7 CE DECLARATION

DECLARATION C	F CO	NFORMITY	
CE			
COMPANY	:	Victron Energy B.V.	
ADDRESS	:	De Paal 35 1351 JG Almere The Netherlands	
Declares that the fol	lowing	products:	
PRODUCT TYPE	:	SINEWAVE INVERTER /	BATTERY CHARGER
BRAND MODELS	:	Victron Energy	
Quattro 12/3000/120-50	/50	Quattro 24/3000/70-50/50	Quattro 48/3000/35-50/50
Quattro 12/5000/200-10	0/100	Quattro 24/5000/120-100/100	Quattro 48/5000/70-100/100
		Quattro 24/8000/200-100/100	Quattro 48/8000/110-100/100
			Quattro 48/10000/140-100/100 Quattro 48/15000/200-100/100
EN-IEC 61000-6-2:2			
EN-IEC 61000-6-3:2 EN 55014-1:2017 EN 55014-2:2015 EN-IEC 62040-2:20 ISO 7637-2:2016	2007/A ⁺ 18 ive 201 12/A13	4/35/EU with the following	g harmonized standards:
EN-IEC 61000-6-3:2 EN 55014-1:2017 EN 55014-2:2015 EN-IEC 62040-2:20 ISO 7637-2:2016 Low Voltage Direct EN-IEC 60335-1:20 EN-IEC 62109-1:20 EN-IEC 62109-2:20 EN-IEC 62040-1:20 Restriction of the u	2007/A ¹ 18 12/A13 10 11 09/C1:: se of c	4/35/EU with the following 2017 2009/A1:2013 certain hazardous substan	
EN-IEC 61000-6-3:2 EN 55014-1:2017 EN 55014-2:2015 EN-IEC 62040-2:20 ISO 7637-2:2016 Low Voltage Direct EN-IEC 60335-1:20 EN-IEC 62109-1:20 EN-IEC 62109-2:20 EN-IEC 62040-1:20 Restriction of the u 2015/863/EU) with t	2007/A 18 12/A13 10 11 09/C1:: se of c he follo	4/35/EU with the following 2017 2009/A1:2013 certain hazardous substan owing harmonized standa	
EN-IEC 61000-6-3:2 EN 55014-1:2017 EN 55014-2:2015 EN-IEC 62040-2:20 ISO 7637-2:2016 Low Voltage Direct EN-IEC 60335-1:20 EN-IEC 62109-1:20 EN-IEC 62109-2:20 EN-IEC 62040-1:20 Restriction of the u 2015/863/EU) with t	2007/A 18 12/A13 10 11 09/C1:: se of c he follo	4/35/EU with the following 2017 2009/A1:2013 certain hazardous substan owing harmonized standa	
EN-IEC 61000-6-3:2 EN 55014-1:2017 EN 55014-2:2015 EN-IEC 62040-2:20 ISO 7637-2:2016 Low Voltage Direct EN-IEC 60335-1:20 EN-IEC 62109-1:20 EN-IEC 62109-2:20 EN-IEC 62040-1:20 Restriction of the u 2015/863/EU) with t	2007/A 18 12/A13 10 11 09/C1:: se of c he follower by ember	4/35/EU with the following 2017 2009/A1:2013 certain hazardous substan owing harmonized standa	